Advancements and Prospects of Graphite Anode for Potassium‐Ion Batteries

Author:

Yu Jiaxu1,Jiang Mingchi1,Zhang Wei1,Li Guang1,Soomro Razium Ali1,Sun Ning1,Xu Bin1ORCID

Affiliation:

1. State Key Laboratory of Organic‐Inorganic Composites Beijing Key Laboratory of Electrochemical Process and Technology for Materials Beijing University of Chemical Technology Beijing 100029 China

Abstract

AbstractPotassium‐ion batteries (KIBs) have recently attracted considerable attention owing to their resource abundance, low cost and environmental friendliness. Graphite as a mature commercial anode material for lithium‐ion batteries, has been proved as a promising anode candidate for KIBs by reversible forming potassium‐graphite intercalation compounds. However, large volume expansion and sluggish K+ kinetics caused by the incompatibility between large radius of K+ and the small interlayer spacing of graphite, result in the poor cycle stability and rate performances, hindering its practical application. Extensive research efforts have focused on improving the potassium storage performance of graphite anodes. This review provides an overview of recent advances in addressing these challenges and optimizing the electrochemical performance of graphite anodes for KIBs. Various strategies to improve the electrochemical performance of graphite and graphitic carbon anodes, such as microcrystalline regulation, heteroatom doping, morphological adjustment, and coating modification, are discussed, while the critical issues and challenges associated with graphite anodes and the prospects for their advancement in KIBs are highlighted. The review offers valuable guidelines for rational structural design and promotes the commercial development of high‐performance graphite anode materials for KIBs.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3