Amplified Performance of Charge Accumulation and Trapping Induced by Enhancing the Dielectric Constant via the Cyano Group of 3D‐Structured Textile for a Triboelectric Multi‐Modal Sensor

Author:

Sun Jingzhe12,Ren Bingqi1,Han Seunghye1ORCID,Shin Hyungsub2ORCID,Cha Seokjun1,Lee Jiwoo1,Bae Jihyun2,Park Jong‐Jin1ORCID

Affiliation:

1. Department of Polymer Science and Engineering Chonnam National University Gwangju 61186 Republic of Korea

2. Human‐Tech Convergence Program Department of Clothing & Textiles Hanyang University Seoul 04763 Republic of Korea

Abstract

AbstractTo further improve the output performance of triboelectric devices, reducing charge attenuation and loss has become a hot research topic. Particularly, textiles have emerged as one of the promising research directions for triboelectric devices owing to their special internal structure and large specific surface area. In the present work, polyacrylonitrile fibers are fabricated with two distinct structures to provide a higher dielectric constant due to the strong polar properties brought about by higher dipole moment of the CN group. In addition, the complex and closely connected structure of the textile increases specific internal surface area. As a friction layer, the output voltage is shown to increase to 625% of the initial value (from 8 to 60 V) after the application of friction for a short time due to accumulation property. When acting as a trapping layer, the charge loss after injection is effectively prevented due to excellent charge trapping effect. After 24 h, the triboelectric output performance remains at ≈70% of the initial value (decreasing from 320 to 220 V), which is more than 20 times that of the polytetrafluoroethylene film, which decreases from 125 to 19 V. The device is realized for the advanced application of multi‐modal sensors.

Funder

National Research Foundation of Korea

Hanyang University

Publisher

Wiley

Subject

General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3