Machine Learning for Quantitative Structural Information from Infrared Spectra: The Case of Palladium Hydride

Author:

Usoltsev Oleg1ORCID,Tereshchenko Andrei2ORCID,Skorynina Alina1ORCID,Kozyr Elizaveta3ORCID,Soldatov Alexander2ORCID,Safonova Olga4ORCID,Clark Adam H.4ORCID,Ferri Davide4ORCID,Nachtegaal Maarten4ORCID,Bugaev Aram4ORCID

Affiliation:

1. ALBA Synchrotron Cerdanyola del Valles Barcelona 08290 Spain

2. Southern Federal University Sladkova 178/24 Rostov‐on‐Don 344090 Russia

3. University of Turin Via Giuria 7 Turin 10125 Italy

4. Paul Scherrer Institute Forschungsstrasse 111 Villigen 5232 Switzerland

Abstract

AbstractInfrared spectroscopy (IR) is a widely used technique enabling to identify specific functional groups in the molecule of interest based on their characteristic vibrational modes or the presence of a specific adsorption site based on the characteristic vibrational mode of an adsorbed probe molecule. The interpretation of an IR spectrum is generally carried out within a fingerprint paradigm by comparing the observed spectral features with the features of known references or theoretical calculations. This work demonstrates a method for extracting quantitative structural information beyond this approach by application of machine learning (ML) algorithms. Taking palladium hydride formation as an example, Pd‐H pressure‐composition isotherms are reconstructed using IR data collected in situ in diffuse reflectance using CO molecule as a probe. To the best of the knowledge, this is the first example of the determination of continuous structural descriptors (such as interatomic distance and stoichiometric coefficient) from the fine structure of vibrational spectra, which opens new possibilities of using IR spectra for structural analysis.

Publisher

Wiley

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3