Atomic‐Scale 3D Structure of a Supported Pd Nanoparticle Revealed by Electron Tomography with Convolution Neural Network‐Based Image Inpainting

Author:

Iwai Hiroki1,Nishino Fumiya1,Yamamoto Tomokazu2ORCID,Kudo Masaki2,Tsushida Masayuki3,Yoshida Hiroshi4ORCID,Machida Masato5ORCID,Ohyama Junya5ORCID

Affiliation:

1. Graduate School of Science and Technology Kumamoto University Kumamoto 860‐8555 Japan

2. The Ultramicroscopy Research Center Kyushu University Fukuoka 819‐0395 Japan

3. Technical Division Kumamoto University Kumamoto 860‐8555 Japan

4. Institute of Science and Engineering Kanazawa University Kanazawa 920‐1192 Japan

5. Faculty of Advanced Science and Technology Kumamoto University Kumamoto 860‐8555 Japan

Abstract

AbstractElectron tomography based on scanning transmission electron microscopy (STEM) is used to analyze 3D structures of metal nanoparticles on the atomic scale. However, in the case of supported metal nanoparticle catalysts, the supporting material may interfere with the 3D reconstruction of metal nanoparticles. In this study, a deep learning‐based image inpainting method is applied to high‐angle annular dark field (HAADF)–STEM images of a supported metal nanoparticle to predict and remove the background image of the support. The inpainting method can separate an 11 nm Pd nanoparticle from the θ‐Al2O3 support in HAADF–STEM images of the θ‐Al2O3‐supported Pd catalyst. 3D reconstruction of the extracted images of the Pd nanoparticle reveals that the Pd nanoparticle adopts a deformed structure of the cuboctahedron model particle, resulting in high index surfaces, which account for the high catalytic activity for methane combustion. Using the xyz coordinate of each Pd atom, the local Pd–Pd bond distance and its variance in a real supported Pd nanoparticle are visualized, showing large strain and disorder at the Pd–Al2O3 interface. The results demonstrate that 3D atomic‐scale analysis enables atomic structure‐based understanding and design of supported metal catalysts.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3