Pseudo‐Wet Plasma Mechanism Enabling High‐Throughput Dry Etching of SiO2 by Cryogenic‐Assisted Surface Reactions

Author:

Hsiao Shih‐Nan1ORCID,Sekine Makoto1,Britun Nikolay1,Mo Michael K. T.1,Imai Yusuke1,Tsutsumi Takayoshi1,Ishikawa Kenji1,Iijima Yuki2,Suda Ryutaro2,Yokoi Masahiko2,Kihara Yoshihide2,Hori Masaru1

Affiliation:

1. Center for Low‐temperature Plasma Sciences Nagoya University Furocho, Nagoya Aichi 464‐8603 Japan

2. Tokyo Electron. Miyagi Ltd Techno‐Hills, Taiwa‐cho, Kurokawa‐gun Miyagi 981‐3629 Japan

Abstract

AbstractManufacturing semiconductor devices requires advanced patterning technologies, including reactive ion etching (RIE) based on the synergistic interactions between ions and etch gas. However, these interactions weaken as devices continuously scale down to sub‐nanoscale, primarily attributed to the diminished transport of radicals and ions into the small features. This leads to a significant decrease in etch rate (ER). Here, a novel synergistic interaction involving ions, surface‐adsorbed chemistries, and materials at cryogenic temperatures is found to exhibit a significant increase in the ER of SiO2 using CF4/H2 plasmas. The ER increases twofold when plasma with H2/(CF4 + H2) = 33% is used and the substrate temperature is lowered from 20 to −60 °C. The adsorption of HF and H2O on the SiO2 surface at cryogenic temperatures is confirmed using in situ Fourier transform infrared spectroscopy. The synergistic interactions of the surface‐adsorbed HF/H2O as etching catalysts and plasma species result in the ER enhancement. Therefore, a mechanism called “pseudo‐wet plasma etching” is proposed to explain the cryogenic etching process. This synergy demonstrates that the enhanced etch process is determined by the surface interactions between ions, surface‐adsorbed chemistry, and the material being etched, rather than interactions between ion and gas phase, as observed in the conventional RIE.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3