Unlocking Maximum Synergy: Screen‐Printing Fabrication of Heterostructured Microsupercapacitor Stacks

Author:

Chen Jiankang1,Han Dong1,Deng Jiahua1,Li Binbin1,Wang Tingyi1,Cao Liuguan2,Zhang Lili3ORCID,Lai Linfei1ORCID

Affiliation:

1. Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM Key Lab Flexible Elect Nanjing Tech Univ 5 XinMofan Rd Nanjing 210009 P. R. China

2. Nanjing Economic and Technological Development Zone Nanjing Nanovate Technologies Co., Ltd. Hengyuan Road Nanjing 210038 P. R. China

3. Institute of Sustainability for Chemicals Energy and Environment Agency for Science, Technology and Research Jurong Island 627833 Singapore

Abstract

AbstractA cost‐effective and scalable approach for the fabrication of heterostructured microsupercapacitors (MSCs) employing screen‐printing followed by sequential electrochemical and microspray deposition techniques has been demonstrated. The microsupercapacitor electrode (MSC) that composed of stacked layers of mesoporous carbon, polyaniline (PANI), and MXene hold significant promise for wearable electronics. By adjusting the deposition and spray cycles, the MSC can be readily coated with PANI and MXene. The sequentially stacked two layers of MXene and PANI on the mesoporous carbon spheres (PMPM‐MSC) yielded a specific capacitance of 1003 mF cm−2 at 0.5 mA cm−2, surpassing the performance of PANI/mesoporous carbon electrode by 1.6 times (771 mF cm−2). After 10,000 cycles of charge and discharge, PMPM‐MSCs retained more than 86% of their initial capacitance. In‐situ Raman spectroscopy confirmed the synergistic effects between MXene and PANI within the heterostructured stacked PMPM‐MSC electrodes, including enhanced electronic conductivity and improved electrolyte ion dissociation, which aligned with the electrochemical measurement results, such as fast charge/discharge rates and reduced internal and mass transport resistance. This study demonstrates the potential of screen‐printed heterostructured MSC stacks with maximum electrochemical synergy for portable and wearable energy storage devices.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3