Electrochemical Restoration of Battery Materials Guided by Synchrotron Radiation Technology for Sustainable Lithium‐Ion Batteries

Author:

Wang Lei1,Shen Yihao1,Liu Yuanlong2,Zeng Pan3,Meng Junxia4,Liu Tiefeng5ORCID,Zhang Liang16

Affiliation:

1. Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 China

2. Zhejiang Tianneng New Materials Co. Ltd. Huzhou Zhejiang 313103 China

3. Institute for Advanced Study School of Mechanical Engineering Chengdu University Chengdu 610106 China

4. School of Physics and Electronics Gannan Normal University Ganzhou 341000 China

5. College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China

6. Jiangsu Key Laboratory of Advanced Negative Carbon Technologies Soochow University Suzhou Jiangsu 215123 China

Abstract

AbstractLithium‐ion batteries (LIBs) have been ubiquitous in modern society, especially in the fields of electronic devices, electric vehicles and grid storage, while raising concerns about a tremendous number of spent batteries in the next five to ten years. As environmental awareness and resource security is gaining increasingly extensive attention, how to effectively deal with spent LIBs has become a challenging issue academically and industrially. Accordingly, the development of battery recycling has surfaced as a highly researched topic in the battery community. Recently, the structural and electrochemical restoration of recycled electrode materials have been proposed as a non‐destructive method to save more energy and chemical agents compared with mature metallurgical methods. Such a refurbishment process of electrode materials is also regarded as a reverse process of their degradation in the working condition. Notably, synchrotron radiation technology, which is previously applied to diagnose battery degrade, has started to play major roles in gaining more insight into the structural restoration of electrode materials. Here, the contribution of synchrotron radiation technology to reveal the underlying degradation and regeneration mechanisms of LIBs cathodes is highlighted, providing a theoretical basis and guidance for the direct recycling and reuse of degraded cathodes.

Funder

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

Publisher

Wiley

Subject

General Materials Science,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3