Coacervate Microdroplets as Synthetic Protocells for Cell Mimicking and Signaling Communications

Author:

Wang Zefeng1,Zhang Min1,Zhou Yan1,Zhang Yanwen1,Wang Kemin1,Liu Jianbo1ORCID

Affiliation:

1. State Key Laboratory of Chemo/Biosensing and Chemometrics College of Biology College of Chemistry and Chemical Engineering Key Laboratory for Bio‐Nanotechnology and Molecular Engineering of Hunan Province Hunan University Changsha 410082 P. R. China

Abstract

AbstractSynthetic protocells are minimal systems that mimic certain properties of natural cells and are used to research the emergence of life from a nonliving chemical network. Currently, coacervate microdroplets, which are formed via liquid–liquid phase separation, are receiving wide attention in the context of cell biology and protocell research; these microdroplets are notable because they can provide liquid‐like compartment structures for biochemical reactions by creating highly macromolecular crowded local environments. In this review, an overview of recent research on the formation of coacervate microdroplets through phase separation; the design of coacervate‐based stimuli‐responsive protocells, multichamber protocells, and membranized protocells; and their cell mimic behaviors, is provided. The simplified protocell models with precisely defined and tunable compositions advance the understanding of the requirements for cellular structure and function. Efforts are then discussed to establish signal communication systems in protocell and protocell consortia, as communication is a fundamental feature of life that coordinates matter exchanges and energy fluxes dynamically in space and time. Finally, some perspectives on the challenges and future developments of synthetic protocell research in biomimetic science and biomedical applications are provided.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3