Accelerating the Development of Thin Film Photovoltaic Technologies: An Artificial Intelligence Assisted Methodology Using Spectroscopic and Optoelectronic Techniques

Author:

Grau‐Luque Enric12ORCID,Becerril‐Romero Ignacio1ORCID,Atlan Fabien12,Huber Daniel3,Harnisch Martina3,Zimmermann Andreas3,Pérez‐Rodríguez Alejandro14ORCID,Guc Maxim1ORCID,Izquierdo‐Roca Victor1ORCID

Affiliation:

1. Catalonia Institute for Energy Research ‐ IREC Sant Adrià de Besòs Barcelona 08930 Spain

2. Facultat de Física Universitat de Barcelona (UB) C. Martí i Franquès 1‐11 Barcelona 08028 Spain

3. Sunplugged GmbH Affenhausen 1 Wildermieming 6413 Austria

4. Departament d'Enginyeria Electrònica i Biomèdica IN2UB Universitat de Barcelona C/ Martí i Franqués 1 Barcelona 08028 Spain

Abstract

AbstractThin film photovoltaic (TFPV) materials and devices present a high complexity with multiscale, multilayer, and multielement structures and with complex fabrication procedures. To deal with this complexity, the evaluation of their physicochemical properties is critical for generating a model that proposes strategies for their development and optimization. However, this process is time‐consuming and requires high expertise. In this context, the adoption of combinatorial analysis (CA) and artificial intelligence (AI) strategies represents a powerful asset for accelerating the development of these complex materials and devices. This work introduces a methodology to facilitate the adoption of AI and CA for the development of TFPV technologies. The methodology covers all the necessary steps from the synthesis of samples for CA to data acquisition, AI‐assisted data analysis, and the extraction of relevant information for research acceleration. Each step provides details on the necessary concepts, requirements, and procedures and are illustrated with examples from the literature. Then, the application of the methodology to a complex set of samples from a TFPV production line highlights its ability to rapidly glean significant insights even in intricate scenarios. The proposed methodology can be applied to other types of materials and devices beyond PV and using different characterization techniques.

Funder

Agencia Estatal de Investigación

Departament d'Universitats, Recerca i Societat de la Informació

HORIZON EUROPE Marie Sklodowska-Curie Actions

HORIZON EUROPE Digital, Industry and Space

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3