A Platform for Atomic Fabrication and In Situ Synthesis in a Scanning Transmission Electron Microscope

Author:

Dyck Ondrej1ORCID,Lupini Andrew R.1,Jesse Stephen1

Affiliation:

1. Center for Nanophase Materials Sciences Oak Ridge National Laboratory 1 Bethel Valley Rd. Oak Ridge TN 37830 USA

Abstract

AbstractThe engineering of quantum materials requires the development of tools able to address various synthesis and characterization challenges. These include the establishment and refinement of growth methods, material manipulation, and defect engineering. Atomic‐scale modification will be a key enabling factor for engineering quantum materials where desired phenomena are critically determined by atomic structures. Successful use of scanning transmission electron microscopes (STEMs) for atomic scale material manipulation has opened the door for a transformed view of what can be accomplished using electron‐beam‐based strategies. However, serious obstacles exist on the pathway from possibility to practical reality. One such obstacle is the in situ delivery of atomized material in the STEM to the region of interest for further fabrication processes. Here, progress on this front is presented with a view toward performing synthesis (deposition and growth) processes in a scanning transmission electron microscope in combination with top‐down control over the reaction region. An in situ thermal deposition platform is presented, tested, and deposition and growth processes are demonstrated. In particular, it is shown that isolated Sn atoms can be evaporated from a filament and caught on the nearby sample, demonstrating atomized material delivery. This platform is envisioned to facilitate real‐time atomic resolution imaging of growth processes and open new pathways toward atomic fabrication.

Funder

U.S. Department of Energy

Office of Science

Basic Energy Sciences

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3