High‐Performance Aqueous Zinc‐Ion Batteries Based on Multidimensional V2O3 Nanosheets@Single‐Walled Carbon Nanohorns@Reduced Graphene Oxide Composite and Optimized Electrolyte

Author:

Hong Junzhi1,Xie Ling1,Shi Chenglong1,Lu Xiaoyi1,Shi Xiaoyan1,Cai Junjie1,Wu Yanxue2,Shao Lianyi1ORCID,Sun Zhipeng1

Affiliation:

1. School of Materials and Energy Guangdong University of Technology Guangzhou Guangdong 510006 China

2. Analysis and Test Center Guangdong University of Technology Guangzhou Guangdong 510006 China

Abstract

AbstractThe drawbacks of poor electronic conductivity and structural instability during the cycling process limit the electrochemical property of vanadium‐based cathode materials for aqueous zinc‐ion batteries. In addition, continuous growth and accumulation of zinc dendrites can puncture the separator and cause an internal short circuit in the battery. In this work, a unique multidimensional nanocomposite is designed by a facile freeze‐drying method with subsequent calcination, consisting of V2O3 nanosheets and single‐walled carbon nanohorns (SWCNHs) crosslinked together and wrapped by reduced graphene oxide (rGO). The multidimensional structure can largely enhance the structural stability and electronic conductivity of the electrode material. Besides, additive Na2SO4 in the ZnSO4 aqueous electrolyte not only prevents the dissolution of cathode materials but also suppresses the Zn dendrite growth. After considering the influence of additive concentration on ionic conductivity and electrostatic force for electrolyte, V2O3@SWCNHs@rGO electrode delivers a high initial discharge capacity of 422 mAh g−1 at 0.2 A g−1 and a high discharge capacity of 283 mAh g−1 after 1000 cycles at 5 A g−1 in 2 m ZnSO4 + 2 m Na2SO4 electrolyte. Experimental techniques reveal that the electrochemical reaction mechanism can be expressed as the reversible phase transformation between V2O5 and V2O3 with Zn3(VO4)2.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3