Interfaces Engineering of Ultrafine Ni@Ni2P/C Core–Shell Heterostructure for High Yield Hydrogen Peroxide Electrosynthesis

Author:

He Yilei1,Wei Yanze23,Huang Ruiyi1,Xia Tian1,Wang Ji1,Yu Zijian1,Wang Zumin23,Yu Ranbo1ORCID

Affiliation:

1. Department of Physical Chemistry School of Metallurgical and Ecological Engineering University of Science & Technology Beijing 30th Xueyuan Road, Haidian District Beijing 100083 China

2. State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences 1 North 2nd Street, Zhongguancun, Haidian District Beijing 100190 China

3. Key Laboratory of Biopharmaceutical Preparation and Delivery Chinese Academy of Sciences 1 North 2nd Street, Zhongguancun, Haidian District Beijing 100190 China

Abstract

AbstractDeveloping cost‐effective and sustainable catalysts with exceptional activity and selectivity is essential for the practical implementation of on‐site H2O2 electrosynthesis, yet it remains a formidable challenge. Metal phosphide core–shell heterostructures anchored in carbon nanosheets (denoted as Ni@Ni2P/C NSs) are designed and synthesized via carbonization and phosphidation of the 2D Ni‐BDC precursor. This core–shell nanostructure provides more accessible active sites and enhanced durability, while the 2D carbon nanosheet substrate prevents heterostructure aggregation and facilitates mass transfer. Theoretical calculations further reveal that the Ni/Ni2P heterostructure‐induced optimization of geometric and electronic structures enables the favored adsorption of OOH* intermediate. All these features endow the Ni@Ni2P/C NSs with remarkable performance in 2e ORR for H2O2 synthesis, achieving a top yield rate of 95.6 mg L−1 h−1 with both selectivity and Faradaic efficiency exceeding 90% under a wide range of applied potentials. Furthermore, when utilized as the anode of an assembled gas diffusion electrode (GDE) device, the Ni@Ni2P/C NSs achieve in situ H2O2 production with excellent long‐term durability (>32 h). Evidently, this work provides a unique insight into the origin of 2e ORR and proposes optimization of H2O2 production through nano‐interface manipulation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

National Key Research and Development Program of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3