A Readily Achieved Potentiostatic Method in Density Functional Theory Calculation for Improved Prediction of the Performance for Electrocatalytic Nitrogen Reduction Reaction

Author:

Hai Guangtong1,Wang Haihui1ORCID

Affiliation:

1. Beijing Key Laboratory for Membrane Materials and Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 China

Abstract

AbstractAccurate prediction of the catalytic performance of nitrogen reduction reaction catalysts based on density functional theory (DFT) calculation is of great significance for developing catalytic materials for nitrogen fixation. However, the applied electrode potential induced the fixation of Fermi level and solvation effect are commonly ignored in the current computational hydrogen electrode method, which leads to the large deviation between the calculation predicted limit potential and the experimentally measured limit potential. In this work, the simple external iteration method is proposed to simulate the Fermi level of the catalysts that are fixed by the applied electrode potential, along with the hybrid solvent model to describe the strong interaction, such as hydrogen bond, between the solvent molecules and the intermediates. This method allowed the theoretical and experimental limit potentials to be in good agreement, indicating the significant effect of the electrode potential and solvation in the DFT calculation. These results will guide the calculation‐based prediction of other reaction systems in the field of electrocatalysis.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Tsinghua University

Publisher

Wiley

Subject

General Materials Science,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3