Observation of a Novel Interligand Chiral Arrangement in Metal Nanoclusters and Its Implication in Resisting Racemization

Author:

Zheng Peisen1,Wang Shuang1,Zhao Huan1,Li Qinzhen1ORCID,Yang Sha1,Chai Jinsong1ORCID,Zhu Manzhou1

Affiliation:

1. Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Anhui University Hefei Anhui 230601 China

Abstract

AbstractGiven the scientifically significant importance of studying the chirality of clusters, the challenges of synthesizing chiral clusters are progressively surmounted. However, the racemization of clusters is unavoidable, and it limits the development of their follow‐on chiral applications. To address this issue, chiral thiols are synthesized and used for the construction of high‐stability optically pure nanoclusters in this work. As a result, a pair of chiral nanoclusters, Au24Cd2(SR)14, is obtained with excellent stability under thermal, acidic, alkaline, oxidizing, and reducing environments. Unexpectedly, it can also maintain its optical activity with the introduction of Cu2+ ions and chiral ligand with opposite configuration. Structural relationship analysis indicates that the excellent stability is mainly dependent on the hierarchical assembly of the nanoclusters, in which the chiral assembly of chiral ligands (a new pattern of chiral arrangement of intramolecular ligands on the surface of clusters) may be a key factor.

Funder

National Natural Science Foundation of China

Ministry of Education

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3