Directed Evolution of Escherichia coli Nissle 1917 to Utilize Allulose as Sole Carbon Source

Author:

Xu Bo1ORCID,Liu Li‐Hua23,Lai Shijing2,Chen Jingjing4,Wu Song2,Lei Wei2,Lin Houliang2,Zhang Yu2,Hu Yucheng25,He Jingtao2,Chen Xipeng2,He Qian2,Yang Min2,Wang Haimei2,Zhao Xuemei2,Wang Man4,Luo Haodong23,Ge Qijun2,Gao Huamei2,Xia Jiaqi6,Cao Zhen4,Zhang Baoxun5,Jiang Ao2,Wu Yi‐Rui2

Affiliation:

1. School of Basic Medical Sciences Hubei University of Science and Technology Xianning 437100 P. R. China

2. Tidetron Bioworks Technology (Guangzhou) Co., Ltd. Guangzhou Qianxiang Bioworks Co., Ltd Guangzhou Guangdong 510000 P. R. China

3. Biology Department and Institute of Marine Sciences College of Science Shantou University Shantou 515063 P. R. China

4. Yeasen Biotechnology (Shanghai) Co., Ltd Shanghai 200000 P. R. China

5. College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China

6. School of Basic Medicine Jiamusi University Jiamusi 154000 P. R. China

Abstract

AbstractSugar substitutes are popular due to their akin taste and low calories. However, excessive use of aspartame and erythritol can have varying effects. While D‐allulose is presently deemed a secure alternative to sugar, its excessive consumption is not devoid of cellular stress implications. In this study, the evolution of Escherichia coli Nissle 1917 (EcN) is directed to utilize allulose as sole carbon source through a combination of adaptive laboratory evolution (ALE) and fluorescence‐activated droplet sorting (FADS) techniques. Employing whole genome sequencing (WGS) and clustered regularly interspaced short palindromic repeats interference (CRISPRi) in conjunction with compensatory expression displayed those genetic mutations in sugar and amino acid metabolic pathways, including glnP, glpF, gmpA, nagE, pgmB, ybaN, etc., increased allulose assimilation. Enzyme‐substrate dynamics simulations and deep learning predict enhanced substrate specificity and catalytic efficiency in nagE A247E and pgmB G12R mutants. The findings evince that these mutations hold considerable promise in enhancing allulose uptake and facilitating its conversion into glycolysis, thus signifying the emergence of a novel metabolic pathway for allulose utilization. These revelations bear immense potential for the sustainable utilization of D‐allulose in promoting health and well‐being.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3