Affiliation:
1. School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Electrochemical Energy Materials State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite Structures Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development Guangxi University Nanning 530004 China
2. Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 China
Abstract
AbstractHole‐transporting layer‐free carbon‐based perovskite solar cells (HTL‐free C‐PSCs) hold great promise for photovoltaic applications due to their low cost and outstanding stability. However, the low power conversion efficiency (PCE) of HTL‐free C‐PSCs mainly results from grain boundaries (GBs). Here, epitaxial growth is proposed to rationally design a hybrid nanostructure of PbI2 nanosheets/perovskite with the desired photovoltaic properties. A post‐treatment technique using tri(2,2,2‐trifluoromethyl) phosphate (TFEP) to induce in situ epitaxial growth of PbI2 nanosheets at the GBs of perovskite films realizes high‐performance HTL‐free C‐PSCs. The structure model and high‐resolution transmission electron microscope unravel the epitaxial growth mechanism. The epitaxial growth of oriented PbI2 nanosheets generates the PbI2/perovskite heterojunction, which not only passivates defects but forms type‐I band alignment, avoiding carrier loss. Additionally, Fourier‐transform infrared spectroscopy, 31P NMR, and 1H NMR spectra reveal the passivation effect and hydrogen bonding interaction between TFEP and perovskite. As a result, the VOC is remarkably boosted from 1.04 to 1.10 V, leading to a substantial gain in PCE from 14.97% to 17.78%. In addition, the unencapsulated PSC maintains the initial PCE of 80.1% for 1440 h under air ambient of 40% RH. The work offers a fresh perspective on the rational design of high‐performance HTL‐free C‐PSCs.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangxi Province
Specific Research Project of Guangxi for Research Bases and Talents