Porous Flower‐Like Nanoarchitectures Derived from Nickel Phosphide Nanocrystals Anchored on Amorphous Vanadium Phosphate Nanosheet Nanohybrids for Superior Overall Water Splitting

Author:

Fan Jiayao12,Wang Lei2,Xiang Xing1,Liu Ying2,Shi Naien1,Lin Yue3,Xu Dongdong2,Jiang Jiadong1,Lai Yu1,Bao Jianchun2,Han Min124ORCID

Affiliation:

1. Fujian Cross Strait Institute of Flexible Electronics (Future Technology) Fujian Normal University Fuzhou 350117 P. R. China

2. Jiangsu Key Laboratory of New Power Batteries and Jiangsu Key Laboratory of Biofunctional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 P. R. China

3. Hefei National Research Center for Physical Sciences at the Microscale University of Science & Technology of China Hefei 230026 P. R. China

4. State Key Laboratory of Coordination Chemistry Nanjing National Laboratory of Solid State Microstructures Nanjing University Nanjing 210093 P. R. China

Abstract

AbstractTransition metal phosphides (TMPs) and phosphates (TM‐Pis) nanostructures are promising functional materials for energy storage and conversion. Nonetheless, controllable synthesis of crystalline/amorphous heterogeneous TMPs/TM‐Pis nanohybrids or related nanoarchitectures remains challenging, and their electrocatalytic applications toward overall water splitting (OWS) are not fully explored. Herein, the Ni2P nanocrystals anchored on amorphous V‐Pi nanosheet based porous flower‐like nanohybrid architectures that are self‐supported on carbon cloth (CC) substrate (Ni2P/V‐Pi/CC) are fabricated by conformal oxidation and phosphorization of pre‐synthesized NiV‐LDH/CC. Due to the unique microstructures and strong synergistic effects of crystalline Ni2P and amorphous V‐Pi components, the obtained Ni2P/V‐Pi/CC owns abundant active sites, suitable surface/interface electronic structure and optimized adsorption‐desorption of reaction intermediates, resulting in outstanding electrocatalytic performances toward hydrogen and oxygen evolution reactions in alkaline media. Correspondingly, the assembled Ni2P/V‐Pi/CC||Ni2P/V‐Pi/CC electrolyzer only needs an ultralow cell voltage (1.44 V) to deliver 10 mA cm−2 water‐splitting currents, exceeding its counterparts, recently reported bifunctional catalysts‐based devices, and Pt/C/CC||IrO2/CC pairs. Moreover, the Ni2P/V‐Pi/CC||Ni2P/V‐Pi/CC manifests remarkable stability. Also, such device shows a certain prospect for OWS in acidic media. This work may spur the development of TMPs/TMPis‐based nanohybrid architectures by combining structure and phase engineering, and push their applications in OWS or other clean energy options.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3