Accelerated Li Penetration and Crack Propagation Due to Mechanical Degradation of Sulfide‐Based Solid Electrolyte

Author:

Diaz Megan1,Mohayman Zakariya1,Shozib Imtiaz2,Tu Howard Qingsong2ORCID,Kushima Akihiro13ORCID

Affiliation:

1. Department of Materials Science and Engineering University of Central Florida Orlando FL 32816 USA

2. Department of Mechanical Engineering Rochester Institute of Technology Rochester NY 14623 USA

3. Advanced Materials Processing and Analysis Center Nanoscience Technology Center University of Central Florida Orlando FL 32816 USA

Abstract

AbstractThis work presents quantitative investigations into the relationships between lithium dendrite growth in the defects of Li6PS5Cl (LPSCl) solid electrolyte (SE), crack nucleation and propagation in the SE, and the associated mechanical forces driving these dendrites and cracks. Two different growth modes for lithium dendrites are identified by ex situ scanning electron microscopy (SEM) observation: longitudinal cracking inside pores in the SE and lateral penetration along boundaries of the SE particles. These in situ TEM tests reveal that concentrated Li plating in a nano‐sized defect on the LPSCl surface will lead to the nucleation and propagation of cracks into the LPSCl under a stress much smaller than the expected mechanical strength of the LPSCl material. This unexpected mechanical degradation is caused by a reduction in the mechanical strength of LPSCl during electrochemical charge/discharge cycling, resulting from a disorder in the crystal structure of LPSCl as revealed by DFT simulations. Due to this mechanical degradation of LPSCl, the threshold force necessary to initiate crack growth is much lower than the previously expected force to drive dendrite growth.

Funder

National Science Foundation

Publisher

Wiley

Reference60 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3