Tin Hybrid Flow Batteries with Ultrahigh Areal Capacities Enabled by Double Gradients

Author:

Ye Xiaolin1,Xiong Ningxin1,Huang Shaopei1,Wu Qixing1,Chen Hongning1,Zhou Xuelong1ORCID

Affiliation:

1. Shenzhen Key Laboratory of New Lithium‐ion Batteries and Mesoporous Materials College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518061 P. R. China

Abstract

AbstractTin‐based hybrid flow batteries have demonstrated dendrite‐free morphology and superior performance in terms of cycle life and energy density. However, the quick accumulation of electrodeposits near the electrode/membrane interface blocks the ion transport pathway during the charging of the battery, resulting to a very limited areal capacity (especially at high current density) that significantly hinders its deployment in long‐duration storage applications. Herein, a conductivity‐activity dual‐gradient design is disclosed by electrically passivating the carbon felt near the membrane/electrode interface and chemically activating the carbon felt near the electrode/current collector interface. In consequence, the tin metals are preferentially plated at the region near electrode/current collector, preventing the ion transport pathway from being easily blocked. The resultant gradient electrode demonstrated an unprecedentedly high areal capacity of 268 mAh cm−2 at a current density of as high as 80 mA cm−2. Numerical modeling and experimental characterizations show that the dual‐gradient electrode differs from conventional electrodes with regard to their reaction current density distribution and electrodeposit distribution during charging. This work demonstrates a new design strategy of 3D electrodes for hybrid flow batteries to induce a desirable distribution of electrodeposits and achieve a high areal capacity at commercially relevant current densities.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Innovation Program

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3