Assembling AgAuSe Quantum Dots with Peptidoglycan and Neutrophils to Realize Enhanced Tumor Targeting, NIR (II) Imaging, and Sonodynamic Therapy

Author:

Yang Ling12,Yuan Meng12,Ma Ping'an12,Chen Xiaorui1,Cheng Ziyong123ORCID,Lin Jun12ORCID

Affiliation:

1. State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China

2. School of Applied Chemistry and Engineering University of Science and Technology of China Hefei 230026 China

3. Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials 523808 Dongguan China

Abstract

AbstractSignificant progress is made in drug delivery systems, but they still face problems such as poor stability in vivo, off‐target drugs, and difficulty in crossing biological barriers. It is urgent to realize efficient targeted delivery and precisely controlled sustained release of drugs by using the integrated nanoplatform. Theranostic nanoplatform is a new biomedical technology that combines diagnosis or monitoring of diseases with treatment. Here, an integrated strategy of diagnosis and treatment is reported for delivering NIR‐II imaged and therapeutic AgAuSe quantum dots (QDs) carried by peptidoglycan multilayer networks of bacteria to hitchhike circulating neutrophils for targeting the tumor. The assembled nanomaterials have good stability, which can not only initiate endogenous cells for drug delivery and achieve efficient targeting, but also guide drug imaging with excellent fluorescence property. Meanwhile, the elimination of established solid tumor is achieved with the administration of sonodynamic therapy without recurrence. This drug system expands the application of endogenous cell to participate in drug delivery system. Thus, the assembly strategy demonstrates the potential of endogenous neutrophils in functioning as natural drug vehicles and the application of NIR‐II fluorescent QDs in biomedical engineering.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3