Top‐Emitting Quantum Dot Light‐Emitting Diodes: Theory, Optimization, and Application

Author:

Lee Taesoo1,Lee Minhyung1,Seo Hansol1,Kim Minjun1,Chun Beomsoo1,Kwak Jeonghun1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering Inter‐university Semiconductor Research Center and Soft Foundry Institute Seoul National University Seoul 08826 Republic of Korea

Abstract

AbstractThe superior optical properties of colloidal quantum dots (QDs) have garnered significant broad interest from academia and industry owing to their successful application in self‐emitting QD‐based light‐emitting diodes (QLEDs). In particular, active research is being conducted on QLEDs with top‐emission device architectures (TQLEDs) owing to their advantages such as easy integration with conventional backplanes, high color purity, and excellent light extraction. However, due to the complicated optical phenomena and their highly sensitive optoelectrical properties to experimental variations, TQLEDs cannot be optimized easily for practical use. This review summarizes previous studies that have investigated top‐emitting device structures and discusses ways to advance the performance of TQLEDs. First, theories relevant to the optoelectrical properties of TQLEDs are introduced. Second, advancements in device optimization are presented, where the underlying theories for each are considered. Finally, multilateral strategies for TQLEDs to enable their wider application to advanced industries are discussed. This work believes that this review can provide valuable insights for realizing commercial TQLEDs applicable to a broad range of applications.

Funder

Ministry of Trade, Industry and Energy

Samsung Advanced Institute of Technology

Ministry of Education

Publisher

Wiley

Subject

General Materials Science,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3