Improving Fast‐Charging Capability of High‐Voltage Spinel LiNi0.5Mn1.5O4 Cathode under Long‐Term Cyclability through Co‐Doping Strategy

Author:

Gao Xin1,Hai Feng1,Chen Wenting1,Yi Yikun1,Guo Jingyu1,Xue Weicheng1,Tang Wei1,Li Mingtao1ORCID

Affiliation:

1. Shaanxi Key Laboratory of Energy Chemical Process Intensification School of Chemical Engineering and Technology Xi'an Jiaotong University No. 28, Xianning West Road Xi'an Shannxi 710049 China

Abstract

AbstractCo‐free spinel LiNi0.5Mn1.5O4 (LNMO) is emerging as a promising contender for designing next generation high‐energy‐density and fast‐charging Li‐ion batteries, due to its high operating voltage and good Li+ diffusion rate. However, further improvement of the Li+ diffusion ability and simultaneous resolution of Mn dissolution still pose significant challenges for their practical application. To tackle these challenges, a simple co‐doping strategy is proposed. Compared to Pure‐LNMO, the extended lattice in resulting LNMO‐SbF sample provides wider Li+ migration channels, ensuring both enhanced Li+ transport kinetics, and lower energy barrier. Moreover, Sb creating structural pillar and stronger TM─F bond together provides a stabilized spinel structure, which stems from the suppression of detrimental irreversible phase transformation during cycling related to Mn dissolution. Benefiting from the synergistic effect, the LNMO‐SbF material exhibits a superior reversible capacity (111.4 mAh g−1 at 5C, and 70.2 mAh g−1 after 450 cycles at 10C) and excellent long‐term cycling stability at high current density (69.4% capacity retention at 5C after 1000 cycles). Furthermore, the LNMO‐SbF//graphite full cell delivers an exceptional retention rate of 96.9% after 300 cycles, and provides a high energy density at 3C even with a high loading. This work provides valuable insight into the design of fast‐charging cathode materials for future high energy density lithium‐ion batteries.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3