High‐Density CuInS2 Quantum Dots for Efficient and Stable CO2 Electroreduction

Author:

Chen Fanrong123,Lu Xiaoying2,Ding Liang24,Lyu Zhen‐Hua24,Zhang Xiaoling1,Fu Jiaju2,Hu Jin‐Song24ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China

2. Beijing National Laboratory for Molecular Sciences (BNLMS) Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China

3. Shaanxi Key Laboratory of Chemical Reaction Engineering College of Chemistry & Chemical Engineering Yan'an University Yan'an 716000 P. R. China

4. University of Chinese Academy of Sciences Beijing 100049 P. R. China

Abstract

AbstractElectrochemically converting CO2 back into fuels and chemicals is promising in alleviating the greenhouse effect worldwide. Various high‐efficiency catalysts have been achieved, yet the unsatisfied structural stability under CO2 electrolysis conditions restricts their practical application. Herein, a sub‐5 nm sized CuInS2 quantum dots (CIS‐QDs) based electrocatalyst for converting CO2 into CO are developed. Taking advantage of the stable M─Ch (metal‐chalcogenide) covalent bonds, and unique p‐block metal properties, the as‐prepared catalyst exhibits excellent structural stability under large overpotentials and can achieve a high CO Faradaic efficiency (FE) of 86% (total CO2 reduction FE of 89%) at −0.65 V versus reversible hydrogen electrode with long‐term durability of 40 h and outstanding current densities of 10.6 mA cm−2 simultaneously. Furthermore, detailed electrochemical analyses revealed that the excellent performance of the as‐prepared catalysts shall be attributed to the high‐density active sites and fast charge transfer brought by the ultrasmall size of CIS‐QDs. This work provides insights into the design of high‐density and stable catalytic sites for developing high‐performance electrocatalysts.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3