Confinement Accelerates Water Oxidation Catalysis: Evidence from In Situ Studies

Author:

Ibrahim Kassa Belay123ORCID,Shifa Tofik Ahmed1,Bordin Matteo1,Moretti Elisa1,Wu Heng‐Liang23,Vomiero Alberto14ORCID

Affiliation:

1. Department of Molecular Sciences and Nanosystems Ca’ Foscari University of Venice Mestre 30170 Italy

2. Center for Condensed Matter Sciences National Taiwan University Taipei 10617 Taiwan

3. Center of Atomic Initiative for New Materials National Taiwan University Taipei 10617 Taiwan

4. Division of Materials Science Department of Engineering Sciences and Mathematics Luleå University of Technology Luleå SE‐97187 Sweden

Abstract

AbstractBasic insight into the structural evolution of electrocatalysts under operating conditions is of substantial importance for designing water oxidation catalysts. The first‐row transition metal‐based catalysts present state‐of‐the‐art oxygen evolution reaction (OER) performance under alkaline conditions. Apparently, confinement has become an exciting strategy to boost the performance of these catalysts. The van der Waals (vdW) gaps of transition metal dichalcogenides are acknowledged to serve as a suitable platform to confine the first‐row transition metal catalysts. This study focuses on confining Ni(OH)2 nanoparticle in the vdW gaps of 2D exfoliated SnS2 (Ex‐SnS2) to accelerate water oxidation and to guarantee long term durability in alkaline solutions. The trends in oxidation states of Ni are probed during OER catalysis. The in situ studies confirm that the confined system produces a favorable environment for accelerated oxygen gas evolution, whereas the un‐confined system proceeds with a relatively slower kinetics. The outstanding OER activity and excellent stability, with an overpotential of 300 mV at 100 mA cm−2 and Tafel slope as low as 93 mV dec−1 results from the confinement effect. This study sheds light on the OER mechanism of confined catalysis and opens up a way to develop efficient and low‐cost electrocatalysts.

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3