Ar/NH3 Plasma Etching of Cobalt‐Nickel Selenide Microspheres Rich in Selenium Vacancies Wrapped with Nitrogen Doped Carbon Nanotubes as Highly Efficient Air Cathode Catalysts for Zinc‐Air Batteries

Author:

Feng Yan‐en12,Chen Weiheng3,Zhao Lin1,Jiang Zhong‐Jie4,Tian Xiaoning2,Jiang Zhongqing1ORCID

Affiliation:

1. Department of Physics Zhejiang Sci‐Tech University Hangzhou 310018 P. R. China

2. Department of Materials and Chemical Engineering Ningbo University of Technology Ningbo 315211 P. R. China

3. Department of Mechanical Engineering Ningbo University of Technology Ningbo 315336 P. R. China

4. Guangzhou Key Laboratory for Surface Chemistry of Energy Materials Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials College of Environment and Energy South China University of Technology Guangzhou 510006 P. R. China

Abstract

AbstractThis work utilizes defect engineering, heterostructure, pyridine N‐doping, and carbon supporting to enhance cobalt‐nickel selenide microspheres' performance in the oxygen electrode reaction. Specifically, microspheres mainly composed of CoNiSe2 and Co9Se8 heterojunction rich in selenium vacancies (VSe·) wrapped with nitrogen‐doped carbon nanotubes (p‐CoNiSe/NCNT@CC) are prepared by Ar/NH3 radio frequency plasma etching technique. The synthesized p‐CoNiSe/NCNT@CC shows high oxygen reduction reaction (ORR) performance (half‐wave potential (E1/2) = 0.878 V and limiting current density (JL) = 21.88 mA cm−2). The JL exceeds the 20 wt% Pt/C (19.34 mA cm−2) and the E1/2 is close to the 20 wt% Pt/C (0.881 V). It also possesses excellent oxygen evolution reaction (OER) performance (overpotential of 324 mV@10 mA cm−2), which even exceeds that of the commercial RuO2 (427 mV@10 mA cm−2). The density functional theory calculation indicates that the enhancement of ORR performance is attributed to the synergistic effect of plasma‐induced VSe· and the CoNiSe2‐Co9Se8 heterojunction. The p‐CoNiSe/NCNT@CC electrode assembled Zinc‐air batteries (ZABs) show a peak power density of 138.29 mW cm−2, outperforming the 20 wt% Pt/C+RuO2 (73.9 mW cm−2) and other recently reported catalysts. Furthermore, all‐solid‐state ZAB delivers a high peak power density of 64.83 mW cm−2 and ultra‐robust cycling stability even under bending.

Funder

National Natural Science Foundation of China

Zhejiang Provincial Outstanding Youth Science Foundation

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3