Affiliation:
1. Wenzhou Key Lab of Advanced Energy Storage and Conversion Zhejiang Province Key Lab of Leather Engineering College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 China
2. Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
Abstract
AbstractThe past several years have witnessed a rapid development of intelligent wearable devices. However, despite the splendid advances, the creation of flexible human–machine interfaces that synchronously possess multiple sensing capabilities, wearability, accurate responsivity, sensitive detectivity, and fast recyclability remains a substantial challenge. Herein, a convenient yet robust strategy is reported to craft flexible transient circuits via stencil printing liquid metal conductor on the water‐soluble electrospun film for human–machine interaction. Due to the inherent liquid conductor within porous substrate, the circuits feature high‐resolution, customized patterning viability, attractive permeability, excellent electroconductivity, and superior mechanical stability. More importantly, such circuits display appealing noncontact proximity capabilities while maintaining compelling tactile sensing performance, which is unattainable by traditional systems with compromised contact sensing. As such, the flexible circuit is utilized as wearable sensors with practical multifunctionality, including information transfer, smart identification, and trajectory monitoring. Furthermore, an intelligent human–machine interface composed of the flexible sensors is fabricated to realize specific goals such as wireless object control and overload alarm. The transient circuits are quickly and efficiently recycled toward high economic and environmental values. This work opens vast possibilities of generating high‐quality flexible and transient electronics for advanced applications in soft and intelligent systems.
Funder
National Natural Science Foundation of China
Subject
General Materials Science,General Chemistry
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献