Multi‐Channel Hollow Carbon Nanofibers with Graphene‐Like Shell‐Structure and Ultrahigh Surface Area for High‐Performance Zn‐Ion Hybrid Capacitors

Author:

Zhang YaFei1,Zhu Chunliu1,Xiong Yan1,Gao Zongying1,Hu Wei2,Shi Jing1,Chen Jingwei1,Tian Weiqian1,Wu Jingyi1,Huang Minghua1,Wang Huanlei1ORCID

Affiliation:

1. School of Materials Science and Engineering Ocean University of China Qingdao Shandong 266100 China

2. School of Chemistry and Chemical Engineering Qilu University of Technology Jinan 250353 China

Abstract

AbstractPorous carbon is the most promising cathode material for Zn‐ion hybrid capacitors (ZIHCs), but is limited by insufficient active adsorption sites and slow ion diffusion kinetics during charge storage. Herein, a pore construction‐pore expansion strategy for synthesizing multi‐channel hollow carbon nanofibers (MCHCNF) is proposed, in which the sacrificial template‐induced multi‐channel structure eliminates the diffusion barrier for enhancing ion diffusion kinetics, and the generated ultrahigh surface area and high‐density defective structures effectively increase the quantity of active sites for charge storage. Additionally, a graphene‐like shell structure formed on the carbon nanofiber surface facilitates fast electron transport, and the highly matchable pore size of MCHCNF with electrolyte‐ions favors the accommodation of charge carriers. These advantages lead to the optimized ZIHCs exhibit high capacity (191.4 mAh g−1), high energy (133.1 Wh kg−1), along with outstanding cycling stability (93.0% capacity retention over 15000 cycles). Systematic ex situ characterizations reveal that the dual‐adsorption of anions and cations synergistically ensures the outstanding electrochemical performance, highlighting the importance of the highly‐developed porous structure of MCHCNF. This work not only provides a promising strategy for improving the capacitive capability of porous materials but also sheds light on charge storage mechanisms and rational design for advanced energy storage devices.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Taishan Scholar Foundation of Shandong Province

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3