Revealing the Structural Intricacies of Biomembrane‐Interfaced Emulsions with Small‐ and Ultra‐Small‐Angle Neutron Scattering

Author:

Vidallon Mark Louis P.1234ORCID,Williams Ashley P.3,Moon Mitchell J.25,Liu Haikun12,Trépout Sylvain6,Bishop Alexis I.7,Teo Boon Mian3,Tabor Rico F.3,Peter Karlheinz2458,de Campo Liliana9,Wang Xiaowei12458ORCID

Affiliation:

1. Molecular Imaging and Theranostics Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia

2. Baker Department of Cardiometabolic Health University of Melbourne Parkville VIC 3010 Australia

3. School of Chemistry Monash University Clayton VIC 3800 Australia

4. Baker Department of Cardiovascular Research Translation and Implementation La Trobe University Bundoora VIC 3086 Australia

5. Atherothrombosis and Vascular Biology Laboratory Baker Heart and Diabetes Institute 75 Commercial Road Melbourne VIC 3004 Australia

6. Ramaciotti Centre for Cryo‐Electron Microscopy Monash University Clayton VIC 3800 Australia

7. School of Physics and Astronomy Monash University Clayton VIC 3800 Australia

8. School of Translational Medicine Monash University Melbourne VIC 3004 Australia

9. Australian Nuclear Science and Technology Organisation (ANSTO) New Illawarra Rd Lucas Heights NSW 2234 Australia

Abstract

AbstractUtilizing cell membranes from diverse cell types for biointerfacing has demonstrated significant advantages in enhancing colloidal stability and incorporating biological properties, tailored specifically for various biomedical applications. However, the structures of these materials, particularly emulsions interfaced with red blood cell (RBC) or platelet (PLT) membranes, remain an underexplored area. This study systematically employs small‐ and ultra‐small‐angle neutron scattering (SANS and USANS) with contrast variation to investigate the structure of emulsions containing perfluorohexane within RBC (RBC/PFH) and PLT membranes (PLT/PFH). The findings reveal that the scattering length density of RBC and PLT membranes is 1.5 × 10−6 Å−2, similar to 30% (w/w) deuterium oxide. Using this solvent as a cell membrane‐matching medium, estimated droplet diameters are 770 nm (RBC/PFH) and 1.5 µm (PLT/PFH), based on polydispersed sphere model fitting. Intriguingly, calculated patterns and invariant analysis reveal native droplet architectures featuring entirely liquid PFH cores, differing significantly from the observed bubble–droplet core system in electron microscopy. This highlights the advantage of SANS and USANS in differentiating genuine colloidal structures in complex dispersions. In summary, this work underscores the pivotal role of SANS and USANS in characterizing biointerfaced colloids and in uncovering novel colloidal structures with significant potential for biomedical applications and clinical translation.

Funder

Australian Nuclear Science and Technology Organisation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3