Highly Reversible Ti/Sn Oxide Nanocomposite Electrodes for Lithium Ion Batteries Obtained by Oxidation of Ti3Al(1‐x)SnxC2 Phases

Author:

Ostroman Irene1,Ferrara Chiara123,Marchionna Stefano4,Gentile Antonio4,Vallana Nicholas1,Sheptyakov Denis5,Lorenzi Roberto1,Ruffo Riccardo123ORCID

Affiliation:

1. Dipartimento di Scienza dei Materiali Università degli Studi di Milano Bicocca Via Cozzi 55 Milano 20125 Italy

2. National Reference Center for Electrochemical Energy Storage (GISEL) Via G. Giusti 9 Firenze 50121 Italy

3. INSTM Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali Via G. Giusti 9 Firenze 50121 Italy

4. Ricerca sul Sistema Energetico – RSE S.p.A. Via R. Rubattino 54 Milano 20134 Italy

5. Paul Scherrer Institut Forschungsstrasse 111 Villigen PSI 5232 Switzerland

Abstract

AbstractAmong the materials for the negative electrodes in Li‐ion batteries, oxides capable of reacting with Li+ via intercalation/conversion/alloying are extremely interesting due to their high specific capacities but suffer from poor mechanical stability. A new way to design nanocomposites based on the (Ti/Sn)O2 system is the partial oxidation of the tin‐containing MAX phase of Ti3Al(1‐x)SnxO2 composition. Exploiting this strategy, this work develops composite electrodes of (Ti/Sn)O2 and MAX phase capable of withstanding over 600 cycles in half cells with charge efficiencies higher than 99.5% and specific capacities comparable to those of graphite and higher than lithium titanate (Li4Ti5O12) or MXenes electrodes. These unprecedented electrochemical performances are also demonstrated at full cell level in the presence of a low cobalt content layered oxide and explained through an accurate chemical, morphological, and structural investigation which reveals the intimate contact between the MAX phase and the oxide particles. During the oxidation process, electroactive nanoparticles of TiO2 and Ti(1‐y)SnyO2 nucleate on the surface of the unreacted MAX phase which therefore acts both as a conductive agent and as a buffer to preserve the mechanical integrity of the oxide during the lithiation and delithiation cycles.

Funder

European Commission

Publisher

Wiley

Subject

General Materials Science,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3