Quantitative Characterization of Local Thermal Properties in Thermoelectric Ceramics Using “Jumping‐Mode” Scanning Thermal Microscopy

Author:

Alikin Denis1ORCID,Zakharchuk Kiryl2,Xie Wenjie3,Romanyuk Konstantin1,Pereira Maria J.1,Arias‐Serrano Blanca I.2,Weidenkaff Anke34,Kholkin Andrei1,Kovalevsky Andrei V.2,Tselev Alexander1ORCID

Affiliation:

1. CICECO – Aveiro Institute of Materials and Department of Physics University of Aveiro Aveiro 3810‐193 Portugal

2. CICECO – Aveiro Institute of Materials and Department of Materials and Ceramic Engineering University of Aveiro Aveiro 3810‐193 Portugal

3. Department of Materials and Earth Sciences Technical University of Darmstadt 64287 Darmstadt Germany

4. Fraunhofer Research Institution for Materials Recycling and Resource Strategies IWKS 63755 Alzenau Germany

Abstract

AbstractThermoelectric conversion may take a significant share in future energy technologies. Oxide‐based thermoelectric composite ceramics attract attention for promising routes for control of electrical and thermal conductivity for enhanced thermoelectric performance. However, the variability of the composite properties responsible for the thermoelectric performance, despite nominally identical preparation routes, is significant, and this cannot be explained without detailed studies of thermal transport at the local scale. Scanning thermal microscopy (SThM) is a scanning probe microscopy method providing access to local thermal properties of materials down to length scales below 100 nm. To date, realistic quantitative SThM is shown mostly for topographically very smooth materials. Here, methods for SThM imaging of bulk ceramic samples with relatively rough surfaces are demonstrated. “Jumping mode” SThM (JM‐SThM), which serves to preserve the probe integrity while imaging rough surfaces, is developed and applied. Experiments with real thermoelectric ceramics show that the JM‐SThM can be used for meaningful quantitative imaging. Quantitative imaging is performed with the help of calibrated finite‐elements model of the SThM probe. The modeling reveals non‐negligible effects associated with the distributed nature of the resistive SThM probes used; corrections need to be made depending on probe‐sample contact thermal resistance and probe current frequency.

Funder

Fundação para a Ciência e a Tecnologia

Deutscher Akademischer Austauschdienst

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3