Nanocrystalline Composite Layer Realized by Simple Sintering Without Surface Treatment, Reducing Hydrophilicity and Increasing Thermal Conductivity

Author:

Cha Hyun‐Ae12,Ha Su‐Jin13,Jang Hye‐Jeong1,Ahn Byeong‐Min1,Moon Young Kook1,Kim Jung‐Hwan1,Choi Jong‐Jin1,Hahn Byung‐Dong1,Han Sang‐Ho1,Lim Jun4,Ahn Do‐Cheon4,Jung In Chul5,Cho Kyung‐Hoon3,Kim Do Kyung2,Kim Jae Chul6,Ahn Cheol‐Woo1ORCID

Affiliation:

1. Functional Ceramics Department Powder & Ceramics Division Korea Institute of Materials Science (KIMS) Changwon Gyeongnam 641‐831 Republic of Korea

2. Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 305‐701 Republic of Korea

3. School of Materials Science and Engineering Kumoh National Institute of Technology 61 Daehak‐ro Gumi Gyeongbuk 39177 Republic of Korea

4. Pohang Accelerator Laboratory Pohang University of Science and Technology 127 Jigokro Pohang Kyungbuk 37637 Republic of Korea

5. Soulmaterial 27 Sampung‐ro Gyeongsan‐si Gyeongsangbuk‐do 38541 Republic of Korea

6. Department of Chemical Engineering and Materials Science Stevens Institute of Technology 1 Castle Point Terrace Hoboken NJ 07030 USA

Abstract

AbstractThe surface treatment for a polymer‐ceramic composite is additionally performed in advanced material industries. To prepare the composite without a surface treatment, the simplest way to manufacture an advanced ceramic‐particle is devised. The method is the formation of a nanocrystalline composite layer through the simple liquid‐phase sintering. Using magnesia (MgO) which shows hydrophilicity, a nanocrystalline surface layer is realized by liquid‐phase sintering. The amorphous matrix of nanocrystalline composite layer makes MgO hydrophobic and ensures miscibility with polymers, and the nanocrystalline MgO ensures high thermal conductivity. In addition, the liquid phase removes the open pores and makes the surface morphology smooth MgO with smooth surface (MgO‐SM). Thermal interface materials (TIM) prepared with MgO‐SM and epoxy show a high thermal conductivity of ≈7.5 W m−1K−1, which is significantly higher than 4.5 W m−1K−1 of pure MgO TIM. Consequently, the formation process of a nanocrystalline surface layer utilizing simple liquid‐phase sintering is proposed as a fabrication method for a next‐generation ceramic‐filler. In addition, it is fundamentally identified that the thermal conductivity of MgO depends on the Mg deficiency, and therefore a poly‐crystal MgO‐SM (produced at a low temperature) has a higher thermal conductivity than a single‐crystal MgO (produced at a high temperature).

Funder

Ministry of Education

Publisher

Wiley

Subject

General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3