Rational Control of Near‐Infrared Colloidal Thick‐Shell Eco‐Friendly Quantum Dots for Solar Energy Conversion

Author:

Jin Lei123,Liu Jiabin2,Liu Xin2,Benetti Daniele23,Selopal Gurpreet Singh4,Tong Xin1,Hamzehpoor Ehsan3,Li Faying2,Perepichka Dmytro F.3,Wang Zhiming M.15,Rosei Federico2ORCID

Affiliation:

1. Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 610054 P. R. China

2. Centre for Energy Materials and Telecommunications Institut national de la recherche scientifique 1650 Boul. Lionel‐Boulet Varennes Quebec J3X 1P7 Canada

3. Department of Chemistry McGill University 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada

4. Department of Engineering Faculty of Agriculture Dalhousie University Truro NS B2N 5E3 Canada

5. Institute for Advanced Study Chengdu University Chengdu Sichuan 610106 P. R. China

Abstract

AbstractThick‐shell colloidal quantum dots (QDs) are promising building blocks for solar technologies due to their size/composition/shape‐tunable properties. However, most well‐performed thick‐shell QDs suffer from frequent use of toxic metal elements including Pb and Cd, and inadequate light absorption in the visible and near‐infrared (NIR) region due to the wide bandgap of the shell. In this work, eco‐friendly AgInSe2/AgInS2 core/shell QDs, which are optically active in the NIR region and are suitable candidates to fabricate devices for solar energy conversion, are developed. Direct synthesis suffers from simultaneously controlling the reactivity of multiple precursors, instead, a template‐assisted cation exchange method is used. By modulating the monolayer growth of template QDs, gradient AgInSeS shell layers are incorporated into AgInSe2/AgInS2 QDs. The resulting AgInSe2/AgInSeS/AgInS2 exhibits better charge transfer than AgInSe2/AgInS2 due to their favorable electronic band alignment, as predicted by first‐principle calculations and confirmed by transient fluorescence spectroscopy. The photoelectrochemical cells fabricated with AgInSe2/AgInSeS/AgInS2 QDs present ≈1.5‐fold higher current density and better stability compared to AgInSe2/AgInS2. The findings define a promising approach toward multinary QDs and pave the way for engineering the QDs’ electronic band structures for solar‐energy conversion.

Funder

Postdoctoral Research Foundation of China

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3