LiOH Decomposition by NiO/ZrO2 in Li‐Air Battery: Chemical Imaging with Operando Synchrotron Diffraction and Correlative Neutron/X‐Ray Computed‐Tomography Analysis

Author:

Anchieta Chayene Gonçalves1ORCID,Francisco Bruno A.B.2,Júlio Julia P. O.2,Trtik Pavel3ORCID,Bonnin Anne1ORCID,Doubek Gustavo2ORCID,Sanchez Dario Ferreira1ORCID

Affiliation:

1. Swiss Light Source Paul Scherrer Institut Forschungsstrasse 111 Villigen 5232 Switzerland

2. Advanced Energy Storage Division Center for Innovation on New Energies (CINE) Laboratory of Advanced Batteries School of Chemical Engineering University of Campinas (Unicamp) Campinas SP 13083‐852 Brazil

3. Laboratory for Neutron Scattering and Imaging Paul Scherrer Institut Forschungsstrasse 111 Villigen 5232 Switzerland

Abstract

AbstractLi‐air batteries attract significant attention due to their highest theoretical energy density among all existing energy storage technologies. Currently, challenges related to extending lifetime and long‐term stability limit their practical application. To overcome these issues and enhance the total capacity of Li‐air batteries, this study introduces an innovative approach with NiO/ZrO2 catalysts. Operando advanced chemical imaging with micrometer spatial resolution unveils that NiO/ZrO2 catalysts substantially change the kinetics of crystalline lithium hydroxide (LiOH) formation and facilitate its rapid decomposition with heterogeneous distribution. Moreover, ex situ combined neutron and X‐ray computed tomography (CT) analysis, provide evidence of distinct lithium phases homogeneously distributed in the presence of NiO/ZrO2. These findings underscore the material's superior physico‐chemical and electronic properties, with more efficient oxygen diffusion and indications of lower obstruction to its active sites, avoiding clogging in the active electrode, a common cause of capacity loss. Electrochemical tests conducted at high current density demonstrated a significant kinetic enhancement of the oxygen reduction and evolution reactions, resulting in improved charge and discharge processes with low overpotential. This pioneering approach using NiO/ZrO2 catalysts represents a step toward on developing the full potential of Li‐air batteries as high‐energy‐density energy storage systems.

Funder

Paul Scherrer Institut

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3