A Gel Polymer Electrolyte with High Uniform Na+ Flux and its Constructed Hybrid Interface Synergistically to Facilitate High‐Performance Sodium Batteries

Author:

Zhang Yan12,Lai Hongjian12,Wu Xiangwei1,Wen Zhaoyin12ORCID

Affiliation:

1. State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China

Abstract

AbstractSodium metal batteries (SMBs) can be developed on a large scale to achieve low‐cost and high‐capacity energy storage systems. Gel polymer electrolyte (GPE) can relieve volatilization of liquid electrolyte, adapt to volume changes in electrodes, and better satisfy the requirements of long‐term SMBs. Herein, a dense polyurethane‐based GPE modified with polyacrylonitrile is synthesized by rapidly swelling two‐component polyurethane/polyacrylonitrile electrospun fiber film. Compared to traditional porous GPEs obtained by swelling porous matrixes, the fiber film provides uniform high Na+ flux inside GPE due to its partial solubility property and ability to dissociate salts. Therefore, it can reduce the polarization effect and induce uniform metal deposition under high current in conjunction with its constructed hybrid N/F‐containing solid electrolyte interface (SEI) that possesses low ionic diffusion barrier. The study demonstrates that GPE has an ionic conductivity of 1.816 mS cm−1 at 20 °C and an ion transference number of 0.53. The full battery (NVP/GPE/Na) assembled with this GPE and Na3V2(PO4)3 (NVP) cathode shows 90.8% capacity retention rate after 1000 cycles at 10 C. Considering the convenient preparation and outstanding electrochemical performances of the obtained GPE, it can also be matched with other electrodes in the future to expand the application of sodium‐based batteries.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3