Band Engineering Through Pb‐Doping of Nanocrystal Building Blocks to Enhance Thermoelectric Performance in Cu3SbSe4

Author:

Wan Shanhong1,Xiao Shanshan1,Li Mingquan1ORCID,Wang Xin2,Lim Khak Ho3ORCID,Hong Min4ORCID,Ibáñez Maria5ORCID,Cabot Andreu67ORCID,Liu Yu1ORCID

Affiliation:

1. Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering School of Chemistry and Chemical Engineering Hefei University of Technology Hefei 230009 P. R. China

2. Center of Analysis and Test Jiangsu University Zhenjiang 212013 P. R. China

3. Institute of Zhejiang University‐Quzhou 99 Zheda Rd Quzhou 324000 P. R. China

4. Centre for Future Materials and School of Engineering University of Southern Queensland Springfield Central Queensland 4300 Australia

5. IST Austria Am Campus 1 Klosterneuburg 3400 Austria

6. Catalonia Institute for Energy Research‐IREC Sant Adrià de Besòs Barcelona 08930 Spain

7. Institució Catalana de Recerca i Estudis Avançats – ICREA Barcelona 08010 Spain

Abstract

AbstractDeveloping cost‐effective and high‐performance thermoelectric (TE) materials to assemble efficient TE devices presents a multitude of challenges and opportunities. Cu3SbSe4 is a promising p‐type TE material based on relatively earth abundant elements. However, the challenge lies in its poor electrical conductivity. Herein, an efficient and scalable solution‐based approach is developed to synthesize high‐quality Cu3SbSe4 nanocrystals doped with Pb at the Sb site. After ligand displacement and annealing treatments, the dried powders are consolidated into dense pellets, and their TE properties are investigated. Pb doping effectively increases the charge carrier concentration, resulting in a significant increase in electrical conductivity, while the Seebeck coefficients remain consistently high. The calculated band structure shows that Pb doping induces band convergence, thereby increasing the effective mass. Furthermore, the large ionic radius of Pb2+ results in the generation of additional point and plane defects and interphases, dramatically enhancing phonon scattering, which significantly decreases the lattice thermal conductivity at high temperatures. Overall, a maximum figure of merit (zTmax) ≈ 0.85 at 653 K is obtained in Cu3Sb0.97Pb0.03Se4. This represents a 1.6‐fold increase compared to the undoped sample and exceeds most doped Cu3SbSe4‐based materials produced by solid‐state, demonstrating advantages of versatility and cost‐effectiveness using a solution‐based technology.

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3