Co‐Solvent Electrolyte Design to Inhibit Phase Transition toward High Performance K+/Zn2+ Hybrid Battery

Author:

Chen Wei1,Wu Jiahao1,Fu Kai1,Deng Zhaohui1,Chen Xingbao1,Cai Hongwei1,Wu Xinfei1,Xing Boyu1,Luo Wen12,Mai Liqiang13ORCID

Affiliation:

1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing School of Materials Science and Engineering Wuhan University of Technology Wuhan Hubei 430070 P. R. China

2. Department of Physics School of Science Wuhan University of Technology Wuhan 430070 P. R. China

3. Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory Xianhu Hydrogen Valley Foshan 528200 P. R. China

Abstract

AbstractManganese hexacyanoferrate (MnHCF) is one of the most promising cathode materials for aqueous battery because of its non‐toxicity, high energy density, and low cost. But the phase transition from MnHCF to Zinc hexacyanoferrate (ZnHCF) and the larger Stokes radius of Zn2+ cause rapid capacity decay and poor rate performance in aqueous Zn battery. Hence, to overcome this challenge, a solvation structure of propylene carbonate (PC)‐trifluoromethanesulfonate (Otf)‐H2O is designed and constructed. A K+/Zn2+ hybrid battery is prepared using MnHCF as cathode, zinc metal as anode, KOTf/Zn(OTf)2 as the electrolyte, and PC as the co‐solvent. It is revealed that the addition of PC inhabits the phase transition from MnHCF to ZnHCF, broaden the electrochemical stability window, and inhibits the dendrite growth of zinc metal. Hence, the MnHCF/Zn hybrid co‐solvent battery exhibits a reversible capacity of 118 mAh g−1 and high cycling performance, with a capacity retention of 65.6% after 1000 cycles with condition of 1 A g−1. This work highlights the significance of rationally designing the solvation structure of the electrolyte and promotes the development of high‐energy‐density of aqueous hybrid ion batteries.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

General Materials Science,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3