Si‐Based High‐Entropy Anode for Lithium‐Ion Batteries

Author:

Lei Xincheng12,Wang Yingying1,Wang Jiayi1,Su Yi3,Ji Pengxiang12,Liu Xiaozhi1,Guo Shengnan1,Wang Xuefeng1,Hu Qingmiao4,Gu Lin5,Zhang Yuegang3,Yang Rui4,Zhou Gang4,Su Dong1ORCID

Affiliation:

1. National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences Beijing 100190 China

2. School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China

3. State Key Laboratory of Low‐Dimensional Quantum Physics and Department of Physics Tsinghua University Beijing 100084 China

4. Shi‐changxu Innovation Center for Advanced Materials Institute of Metal Research Chinese Academy of Sciences Shenyang 110016 China

5. Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials Department of Materials Science and Engineering Tsinghua University Beijing 100084 China

Abstract

AbstractUp to now, only a small portion of Si has been utilized in the anode for commercial lithium‐ion batteries (LIBs) despite its high energy density. The main challenge of using micron‐sized Si anode is the particle crack and pulverization due to the volume expansion during cycling. This work proposes a type of Si‐based high‐entropy alloy (HEA) materials with high structural stability for the LIB anode. Micron‐sized HEA‐Si anode can deliver a capacity of 971 mAhg−1 and retains 93.5% of its capacity after 100 cycles. In contrast, the silicon–germanium anode only retains 15% of its capacity after 20 cycles. This study has discovered that including HEA elements in Si‐based anode can decrease its anisotropic stress and consequently enhance ductility at discharged state. By utilizing in situ X‐ray diffraction and transmission electron microscopy analyses, a high‐entropy transition metal doped Lix(Si/Ge) phase is found at lithiated anode, which returns to the pristine HEA phase after delithiation. The reversible lithiation and delithiation process between the HEA phases leads to intrinsic stability during cycling. These findings suggest that incorporating high‐entropy modification is a promising approach in designing anode materials toward high‐energy density LIBs.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3