Germanene Reformation from Oxidized Germanene on Ag(111)/Ge(111) by Vacuum Annealing

Author:

Suzuki Seiya1ORCID,Katsube Daiki2,Yano Masahiro1,Tsuda Yasutaka3,Terasawa Tomo‐o1,Ozawa Takahiro4,Fukutani Katsuyuki14,Kim Yousoo2,Asaoka Hidehito1,Yuhara Junji5,Yoshigoe Akitaka3

Affiliation:

1. Advanced Science Research Center (ASRC) Japan Atomic Energy Agency (JAEA) 2–4 Shirakata, Tokai‐mura, Naka‐gun Ibaraki 319–1195 Japan

2. Cluster for Pioneering Research RIKEN 2‐1 Hirosawa, Wako Saitama 351‐0198 Japan

3. Materials Sciences Research Center Japan Atomic Energy Agency (JAEA) 1‐1‐1 Kouto, Sayo‐cho, Sayo‐gun Hyogo 679–5148 Japan

4. Institute of Industrial Science The University of Tokyo 4‐6‐1 Komaba Meguro‐ku Tokyo 153–8505 Japan

5. Department of Energy Engineering Nagoya University Furo‐cho, Chikusa‐ku Nagoya Aichi 464–8603 Japan

Abstract

AbstractFor group 14 mono‐elemental 2D materials, such as silicene, germanene, and stanene, oxidation is a severe problem that alters or degrades their physical properties. This study shows that the oxidized germanene on Ag(111)/Ge(111) can be reformed to germanene by simple heating ≈500 °C in a vacuum. The key reaction in reforming germanene is the desorption of GeO and GeO2 during heating ≈350 °C. After removing surface oxygen, Ge further segregates to the surface, resulting in the reformation of germanene. The reformed germanene has the same crystal structure, a (7√7 × 7√7) R19.1° supercell with respect to Ag(111), and has equivalent high quality to that of as‐grown germanene on Ag(111)/Ge(111). Even after air oxidation, germanene can be reformed by annealing in a vacuum. On the other hand, the desorption of GeO and GeO2 at high temperatures is not suppressed in the O2 backfilling atmosphere. This instability of oxidized germanene/Ag(111)/Ge(111) at high temperatures contributes to the ease of germanene reformation without residual oxygen. In other words, the present germanene reformation, as well as the segregation of germanene on Ag(111)/Ge(111), is a highly robust process to synthesize germanene.

Funder

Precursory Research for Embryonic Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3