Regulating Grind‐Induced Lattice Distortion for Nickel‐Rich Cathodes by Annealing

Author:

Song Jinpeng1,Huang Lujun12ORCID,Yang Guobo1,Liu Tiefeng3,Liu Shaoshuai1,Cong Guanghui1,Huang Yating1,Liu Zheyuan1,Gao Xiang4,Geng Lin1

Affiliation:

1. School of Materials Science and Engineering Harbin Institute of Technology BOX 433 Harbin 150001 P. R. China

2. Stake Key Laboratory of Advanced Welding and Joining Harbin Institute of Technology Harbin 150001 P. R. China

3. College of Chemical and Biological Engineering Zhejiang University Zhejiang 310058 P. R. China

4. Center for High Pressure Science & Technology Advanced Research Beijing 100193 P. R. China

Abstract

AbstractThe commercialization of high‐performance nickel‐rich cathodes always awaits a cost‐effective, environmentally friendly, and large‐scale preparation method. Despite a grinding process normally adopted in the synthesis of the nickel‐rich cathodes, lattice distortion, rough surface, and sharp edge transformation inevitably occurr in the resultant samples. In this work, an additional annealing process is proposed that aims at regulating lattice distortion as well as achieving round and smoother morphologies without any structural or elemental modifications. Such a structural enhancement is favored for improved lithium diffusion and electrochemical stability during cycling. Consequently, the annealed cathodes demonstrate a considerable enhancement in capacity retention, escalating from 68.7% to 91.9% after 100 cycles at 1 C. Additionally, the specific capacity is significantly increased from 64 to 142 mAh g−1 at 5 C when compared to the unannealed cathodes. This work offers a straightforward and effective approach for reinforcing the electrochemical properties of nickel‐rich cathodes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Materials Science,General Chemistry

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3