Visualizing the Interfacial Chemistry in Multivalent Metal Anodes by Transmission Electron Microscopy

Author:

Lin Huijun1,Yu Jingya1,Chen Feiyang1,Li Renjie1,Xia Bao Yu2ORCID,Xu Zheng‐Long13

Affiliation:

1. Research Institute for Advanced Manufacturing Department of Industrial and Systems Engineering The Hong Kong Polytechnic University Hung Hom Hong Kong P. R. China

2. Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education) Hubei Key Laboratory of Material Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Rd Wuhan 430074 P. R. China

3. State Key Laboratory of Ultraprecision Machining Technology the Hong Kong Polytechnic University Hung Hom Hong Kong P. R. China

Abstract

AbstractMultivalent metal batteries (MMBs) have been considered potentially high‐energy and low‐cost alternatives to commercial Li‐ion batteries, thus attracting tremendous research interest for energy‐storage applications. However, the plating and stripping of multivalent metals (i.e., Zn, Ca, Mg) suffer from low Coulombic efficiencies and short cycle life, which are largely rooted in the unstable solid electrolyte interphase. Apart from exploring new electrolytes or artificial layers for robust interphases, fundamental works on deciphering interfacial chemistry have also been conducted. This work is dedicated to summarizing the state‐of‐the‐art advances in understanding the interphases for multivalent metal anodes revealed by transmission electron microscopy (TEM) methods. Operando and cryogenic TEM with high spatial and temporal resolutions realize the dynamic visualization of the vulnerable chemical structures in interphase layers. Following a scrutinization of the interphases on different metal anodes, we elucidate their features for appealing multivalent metal anodes. Finally, perspectives are proposed for the remaining issues on analyzing and regulating interphases for practical MMBs.

Funder

Guangdong Provincial Department of Science and Technology

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3