Near‐Infrared Trapping by Surface Plasmons in Randomized Platinum–Ceramic Metamaterial for Thermal Barrier Coatings

Author:

Yang Zesheng1ORCID,Huang Muzhang1,Yang Ronggui2,Sun Jingbo1,Zhang Xuefei1,Pan Wei1,Wan Chunlei1

Affiliation:

1. State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 P. R. China

2. State Key Laboratory of Coal Combustion School of Energy and Power Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China

Abstract

AbstractAs the operation temperature of next generation gas turbine is targeted to be 1800 °C toward a higher efficiency and lower carbon emission, the near‐infrared (NIR) thermal radiation becomes a major concern for the durability of the metallic turbine blades. Although thermal barrier coatings (TBCs) are applied to provide thermal insulations, they are translucent to the NIR radiation. It is a major challenge for TBCs to achieve optically thick with limited physical thickness (usually < 1 mm) for effectively shielding the NIR radiation damage. Here, an NIR metamaterial is reported, where a Gd2Zr2O7 ceramic matrix is randomly dispersed with microscale Pt (0.53 vol%) nanoparticles with a size of 100–500 nm. Attenuated by the Gd2Zr2O7 matrix, a broadband NIR extinction is achieved through the red‐shifted plasmon resonance frequencies and higher‐order multipole resonances of the Pt nanoparticles. A very high absorption coefficient of ≈3 × 104 m−1, approaching the Rosseland diffusion limit for a typical coating thickness, minimizes the radiative thermal conductivity to ≈10−2 W m−1 K−1 and successfully shields the radiative heat transfer. This work suggests that constructing a conductor/ceramic metamaterial with tunable plasmonics could be a strategy to shield NIR thermal radiation for high temperature applications.

Funder

National Natural Science Foundation of China

National Science and Technology Major Project

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3