Deep‐qGFP: A Generalist Deep Learning Assisted Pipeline for Accurate Quantification of Green Fluorescent Protein Labeled Biological Samples in Microreactors

Author:

Wei Yuanyuan1ORCID,Abbasi Syed Muhammad Tariq1,Mehmood Nawaz1,Li Luoquan1,Qu Fuyang1,Cheng Guangyao1,Hu Dehua1ORCID,Ho Yi‐Ping1234,Yuan Wu1,Ho Ho‐Pui1

Affiliation:

1. Department of Biomedical Engineering The Chinese University of Hong Kong Shatin Hong Kong SAR 999 077 China

2. Centre for Biomaterials The Chinese University of Hong Kong Shatin Hong Kong SAR 999 077 China

3. Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics Shatin Hong Kong SAR 999 077 China

4. State Key Laboratory of Marine Pollution City University of Hong Kong Shatin Hong Kong SAR 999 077 China

Abstract

AbstractAbsolute quantification of biological samples provides precise numerical expression levels, enhancing accuracy, and performance for rare templates. Current methodologies, however, face challenges‐flow cytometers are costly and complex, whereas fluorescence imaging, relying on software or manual counting, is time‐consuming and error‐prone. It is presented that Deep‐qGFP, a deep learning‐aided pipeline for the automated detection and classification of green fluorescent protein (GFP) labeled microreactors, enables real‐time absolute quantification. This approach achieves an accuracy of 96.23% and accurately measures the sizes and occupancy status of microreactors using standard laboratory fluorescence microscopes, providing precise template concentrations. Deep‐qGFP demonstrates remarkable speed, quantifying over 2000 microreactors across ten images in just 2.5 seconds, with a dynamic range of 56.52–1569.43 copies µL−1. The method demonstrates impressive generalization capabilities, successfully applied to various GFP‐labeling scenarios, including droplet‐based, microwell‐based, and agarose‐based applications. Notably, Deep‐qGFP is the first all‐in‐one image analysis algorithm successfully implemented in droplet digital polymerase chain reaction (PCR), microwell digital PCR, droplet single‐cell sequencing, agarose digital PCR, and bacterial quantification, without requiring transfer learning, modifications, or retraining. This makes Deep‐qGFP readily applicable in biomedical laboratories and holds potential for broader clinical applications.

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3