Surface‐Mediated Charge Transfer of Photogenerated Carriers in Diamond

Author:

Chemin Arsène1ORCID,Levine Igal1ORCID,Rusu Marin1ORCID,Vaujour Rémi2ORCID,Knittel Peter3ORCID,Reinke Philipp3ORCID,Hinrichs Karsten4ORCID,Unold Thomas1ORCID,Dittrich Thomas1ORCID,Petit Tristan1ORCID

Affiliation:

1. Helmholtz‐Zentrum Berlin für Materialien und Energie GmbH 14109 Berlin DE Germany

2. École Normale Supérieure de Lyon Lyon 69342 France

3. Fraunhofer‐Institut für Angewandte Festkörperphysik Freiburg 79108 Freiburg DE Germany

4. Leibniz‐Institut für Analytische Wissenschaften–ISAS–e.V. 12489 Berlin DE Germany

Abstract

AbstractSolvated electrons are highly reductive chemical species whose chemical properties remain largely unknown. Diamond materials are proposed as a promising emitter of solvated electrons and visible light excitation would enable solar‐driven CO2 or N2 reductions reactions in aqueous medium. But sub‐bandgap excitation remains challenging. In this work, the role of surface states on diamond materials for charge separation and emission in both gaseous and aqueous environments from deep UV to visible light excitation is elucidated. Four different X‐ray and UV–vis spectroscopy methods are applied to diamond materials with different surface termination, doping and crystallinity. Surface states are found to dominate sub‐bandgap charge transfer. However, the surface charge separation is drastically reduced for boron‐doped diamond due to a very high density of bulk defects. In a gaseous atmosphere, the oxidized diamond surface maintains a negative electron affinity, allowing charge emission, due to remaining hydrogenated and hydroxylated groups. In an aqueous electrolyte, a photocurrent for illumination down to 3.5 eV is observed for boron‐doped nanostructured diamond, independent of the surface termination. This study opens new perspectives on photo‐induced interfacial charge transfer processes from metal‐free semiconductors such as diamonds.

Funder

Volkswagen Foundation

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3