In Situ Vanadium‐Deficient Engineering of V2C MXene: A Pathway to Enhanced Zinc‐Ion Batteries

Author:

Wu Bing1ORCID,Li Min2,Mazánek Vlastimil1,Liao Zhongquan3,Ying Yulong4,Oliveira Filipa M.1ORCID,Dekanovsky Lukas1,Jan Luxa1,Hou Guorong1,Antonatos Nikolas1,Wei Qiliang5,Li Min1,Pal Bhupender1,He Junjie2,Koňáková Dana6,Vejmělková Eva6,Sofer Zdenek1ORCID

Affiliation:

1. Department of Inorganic Chemistry University of Chemistry and Technology Prague Technická 5 Prague 6 166 28 Czech Republic

2. Department of Physical and Macromolecular Chemistry Faculty of Science Charles University in Prague Prague 12843 Czech Republic

3. Fraunhofer Institute for Ceramic Technologies and Systems (IKTS) Maria‐Reiche‐Strasse 2 01109 Dresden Germany

4. School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 P. R. China

5. Institute of Micro/Nano Materials and Devices Ningbo University of Technology Ningbo 315211 P. R. China

6. Department of Materials Engineering and Chemistry Faculty of Civil Engineering Czech Technical University in Prague Thákurova 7 Prague 6 166 29 Czech Republic

Abstract

AbstractThis research examines vanadium‐deficient V2C MXene, a two‐dimensional (2D) vanadium carbide with exceptional electrochemical properties for rechargeable zinc‐ion batteries. Through a meticulous etching process, a V‐deficient, porous architecture with an expansive surface area is achieved, fostering three‐dimensional (3D) diffusion channels and boosting zinc ion storage. Analytical techniques like scanning electron microscopy, transmission electron microscopy, Brunauer–Emmett–Teller, and X‐ray diffraction confirm the formation of V2C MXene and its defective porous structure. X‐ray photoelectron spectroscopy further verifies its transformation from the MAX phase to MXene, noting an increase in V3+ and V4+ states with etching. Cyclic voltammetry reveals superior de‐zincation kinetics, evidenced by consistent V3+/V4+ oxidation peaks at varied scanning rates. Overall, this V‐deficient MXene outperforms raw MXenes in capacity and rate, although its capacity diminishes over extended cycling due to structural flaws. Theoretical analyses suggest conductivity rises with vacancies, enhancing 3D ionic diffusion as vacancy size grows. This work sheds light on enhancing V‐based MXene structures for optimized zinc‐ion storage.

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3