Protein‐Based Patterning to Spatially Functionalize Biomimetic Membranes

Author:

Reverte‐López María1ORCID,Gavrilovic Svetozar1ORCID,Merino‐Salomón Adrián1ORCID,Eto Hiromune2ORCID,Yagüe Relimpio Ana3ORCID,Rivas Germán4ORCID,Schwille Petra1ORCID

Affiliation:

1. Department of Cellular and Molecular Biophysics Max Planck Institute of Biochemistry 82152 Martinsried Germany

2. Hubrecht Institute‐KNAW (Royal Netherlands Academy of Arts and Sciences) Utrecht 3584 CT The Netherlands

3. Department of Cellular Biophysics Max Planck for Medical Research 69120 Heidelberg Germany

4. Centro de Investigaciones Biológicas Margarita Salas Consejo Superior de Investigaciones Científicas (CSIC) Madrid 28040 Spain

Abstract

AbstractThe bottom‐up reconstitution of proteins for their modular engineering into synthetic cellular systems can reveal hidden protein functions in vitro. This is particularly evident for the bacterial Min proteins, a paradigm for self‐organizing reaction‐diffusion systems that displays an unexpected functionality of potential interest for bioengineering: the directional active transport of any diffusible cargo molecule on membranes. Here, the MinDE protein system is reported as a versatile surface patterning tool for the rational design of synthetically assembled 3D systems. Employing two‐photon lithography, microswimmer‐like structures coated with tailored lipid bilayers are fabricated and demonstrate that Min proteins can uniformly pattern bioactive molecules on their surface. Moreover, it is shown that the MinDE system can form stationary patterns inside lipid vesicles, which allow the targeting and distinctive clustering of higher‐order protein structures on their inner leaflet. Given their facile use and robust function, Min proteins thus constitute a valuable molecular toolkit for spatially patterned functionalization of artificial biosystems like cell mimics and microcarriers.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

General Materials Science,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3