Affiliation:
1. Institute of Materials Research Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
2. Institute of Biopharmaceutical and Health Engineering Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen 518055 China
3. Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853‐1301 USA
Abstract
AbstractVanadium flow batteries (VFBs) face a challenge with the low reaction rates of the V(II)/V(III) redox couple, which limits the performance of VFBs. Additionally, the negative electrode in VFBs is often accompanied by the persistent hydrogen evolution reaction (HER), which is difficult to eliminate. Therefore, understanding the spatial distribution of activity on the negative electrode and the HER side reaction on the electrode surface is of critical importance. This study proposes a weak measurement imaging method to characterize the spatial distribution of surface activity and HER onset potential on the negative electrode in VFBs). This method enables the visualization and in situ detection of key parameters such as the absolute values of |ipa|, |ipc|, |∆E|, |ipc/ipa|, and the HER onset potential. By comparing three different types of graphite felts with varying activity levels, it validates the feasibility of this method. Furthermore, electrochemical stability tests are conducted to study the electrodes repeatability, uniformity, and durability. This method holds promise in guiding the design of electrodes with enhanced activity, good reversibility, minimized HER side reactions, and uniform distribution.
Funder
National Natural Science Foundation of China
Subject
General Materials Science,General Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献