Multivalued Memory via Freezing of Super‐Hard Magnetic Domains in a Quasi 2D‐Magnet

Author:

Mentré Olivier1ORCID,Leclercq Bastien1ORCID,Arevalo‐Lopez Angel M.1ORCID,Pautrat Alain2,Petit Sylvain3,Minaud Claire4ORCID,Daviero‐Minaud Sylvie1ORCID,Hovhannisyan Razmik A.5,Stolyarov Vasily S.5ORCID

Affiliation:

1. UCCS – Axe Chimie du Solide – Groupe MISSP UMR‐CNRS 8181 Université de Lille Cedex 59652 France

2. CRISMAT CNRS Normandie Univ ENSICAEN UNICAEN Caen 14050 France

3. Laboratoire Léon Brillouin CEA CNRS Université Paris‐Saclay Gif sur Yvette Cedex F‐91191 France

4. Institut Michel‐Eugène Chevreul – CNRS (FR2638) Université de Lille Université d'Artois, Centrale Lille, CNRS, l'INRAE Villeneuve‐d'Ascq 59650 France

5. Advanced Mesoscience and Nanotechnology Centre Moscow Institute of Physics and Technology Dolgoprudny 141700 Russia

Abstract

AbstractThe design of high‐density non‐volatile memories is a long‐standing dream, limited by conventional storage “0” or “1” bits. An alternative paradigm exists in which regions within candidate materials can be magnetized to intermediate values between the saturation limits. In principle, this paves the way to multivalued bits, vastly increasing storage density. Single‐molecule magnets, are good examples offering transitions between intramolecular quantum levels, but require ultra‐low temperatures and limited relaxation time between magnetization states. It is showed here that the quasi 2D‐Ising compound BaFe2(PO4)2 overcomes these limitations. The combination of giant magneto‐crystalline anisotropy, strong ferromagnetic exchange, and strong intrinsic pinning creates remarkably narrow magnetic domain walls, collectively freezing under Tf ≈15 K. This results in a transition from a soft to a super‐hard magnet (coercive force > 14 T). Any magnetization can then be printed and robustly protected from external fields with an energy barrier >9T at 2 K.

Funder

Federación Española de Enfermedades Raras

Publisher

Wiley

Subject

General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3