Quantifying the glacial meltwater contribution to mountainous streams using stable water isotopes: What are the opportunities and limitations?

Author:

Wanner Philipp1ORCID,Zischg Andreas2ORCID,Wanner Christoph3ORCID

Affiliation:

1. Department of Earth Sciences University of Gothenburg Gothenburg Sweden

2. Institute of Geography University of Bern Bern Switzerland

3. Institute of Geological Sciences University of Bern Bern Switzerland

Abstract

AbstractThis study aims to determine the opportunities and limitations of using stable water isotopes to quantify the glacial meltwater contribution to mountainous streams. For this purpose, three partially glaciated catchments in the Swiss Alps were selected as the study area. In the three catchments, stable isotope analysis (δ18O and δ2H) was conducted of the streams and the end‐members that contribute to the stream discharge (glacial meltwater, rain, snow). The investigations revealed that the contribution of glacial meltwater to mountainous streams can be quantified using stable water isotopes if three criteria are met: (A) The snow meltwater contribution to mountainous streams must be negligible due to its highly variable stable isotope signature; (B) the groundwater input needs to be either insignificant during this snow‐free period or the groundwater residence time must be short such that groundwater contribution does not delay the end‐member signal arriving in the streams; and (C) the isotope signal of the glacial melt end‐member needs to be distinct from the other end‐members. One of the three investigated catchments fulfilled these criteria in August and September, and the glacial meltwater contribution to the mountainous streams could be estimated based on stable water isotopes. During this time period, the glacial meltwater contribution to the stream discharge corresponded to up to 85% ± 2% and to 28.7% ± 10% of the total annual discharge, respectively. This high glacial meltwater contribution demonstrates that the mountainous stream discharges in August and September will probably strongly decrease in the future due to global warming‐induced deglaciation. Overall, this study demonstrates that many hydrogeological conditions need to be met so that stable water isotopes can be used to quantify the glacial meltwater contribution to mountainous streams. This highlights the challenges when using stable water isotopes for hydrograph separation and serves as a guide for future stable water isotope studies in mountainous regions.

Publisher

Wiley

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3