Fixation of air nitrogen to ammonia and nitrate using cathodic plasma and anodic plasma in the air plasma electrolysis method

Author:

Saksono Nelson1ORCID,Suryawinata Patresia1,Zakaria Zainal2,Farawan Bening3ORCID

Affiliation:

1. Department of Chemical Engineering Universitas Indonesia Depok Indonesia

2. Pusat Jaminan Kualiti Universitas Malaysia Sabah Kota Kinabalu Malaysia

3. Department of Research and Innovation Infrastructure BRIN Cibinong Indonesia

Abstract

AbstractThe fixation of nitrogen (N2) from the air into ammonia (NH3) and nitrate (NO3) is usually conducted using the Haber–Bosch process, which requires the raw material of hydrocarbons for hydrogen (H2), which has a large amount of energy but produces high CO2 emissions. An environmentally friendly and energy‐saving alternative is the air plasma electrolysis method, which can be used to synthesize NH3 and NO3 under ambient conditions. In this study, this method was used to inject air into the plasma zone in a K2SO4 electrolyte solution to produce N2 fixation compounds. The results showed that the use of cathodic plasma promoted the formation of NH3 but suppressed NO3 production. The optimal air injection rate was achieved at 0.6 L.min−1 and an electrical power of 452 W, with a total fixed N2 of 51.66 mmol. The highest formation of NO3 in cathodic plasma was obtained in 35 min, with a value of 29.92 mmol, and 2.57 mmol NH3 was achieved at 60 min. The high concentration of H2 gas, which is a by‐product of this process, can contribute to increasing the use of Haber–Bosch green technology in the production of NH3.

Funder

Universitas Indonesia

Publisher

Wiley

Subject

General Environmental Science,Waste Management and Disposal,Water Science and Technology,General Chemical Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3