Bayesian compositional generalized linear models for analyzing microbiome data

Author:

Zhang Li1ORCID,Zhang Xinyan2,Yi Nengjun1

Affiliation:

1. Department of Biostatistics University of Alabama at Birmingham Alabama USA

2. School of Data Science and Analytics Kennesaw State University Kennesaw Georgia USA

Abstract

The crucial impact of the microbiome on human health and disease has gained significant scientific attention. Researchers seek to connect microbiome features with health conditions, aiming to predict diseases and develop personalized medicine strategies. However, the practicality of conventional models is restricted due to important aspects of microbiome data. Specifically, the data observed is compositional, as the counts within each sample are bound by a fixed‐sum constraint. Moreover, microbiome data often exhibits high dimensionality, wherein the number of variables surpasses the available samples. In addition, microbiome features exhibiting phenotypical similarity usually have similar influence on the response variable. To address the challenges posed by these aspects of the data structure, we proposed Bayesian compositional generalized linear models for analyzing microbiome data (BCGLM) with a structured regularized horseshoe prior for the compositional coefficients and a soft sum‐to‐zero restriction on coefficients through the prior distribution. We fitted the proposed models using Markov Chain Monte Carlo (MCMC) algorithms with R package rstan. The performance of the proposed method was assessed by extensive simulation studies. The simulation results show that our approach outperforms existing methods with higher accuracy of coefficient estimates and lower prediction error. We also applied the proposed method to microbiome study to find microorganisms linked to inflammatory bowel disease (IBD). To make this work reproducible, the code and data used in this article are available at https://github.com/Li‐Zhang28/BCGLM.

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3